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INCLUSIVE JETS AT THE TEVATRONa

SALLY SEIDEL
The New Mexico Center for Particle Physics

The University of New Mexico

Albuquerque, NM 87131 USA

for the CDF and D0 Collaborations

Results are presented for the inclusive jet cross section versus jet ET in p� p col-
lisions at

p
s = 1:8 TeV as measured by the CDF and D0 detectors at Fermilab's

Tevatron collider. The data are compared to next-to-leading-order QCD predic-
tions using di�erent input parton distribution functions. The ratio of inclusive jet
cross sections at

p
s = 0:63 TeV and

p
s = 1:8 TeV, versus jet xT , is also presented

and compared to QCD predictions.

1 Introduction

Jet distributions at colliders are interesting to study for several reasons, in
particular because they can signal the existence of new phenomena, test QCD
predictions, and validate parton distribution functions. The complementary
Tevatron detectors D0 1 and CDF 2 have studied the inclusive jet cross section
at center-of-mass energies 1800 and 630 GeV.

The aspects of the two experiments that are especially important for
the jet analyses are well described elsewhere 3. For the results presented
here, the radius of the reconstruction cone used 4;5 in both analyses is R �p
(��)2 + (��)2 = 0:7, where � is track pseudo-rapidity, � is measured from

the Tevatron plane, �� = �2 � �1, �� = �2 � �1, and the subscripts 1 and 2
correspond to the axis of the cone and the particle track, respectively.

2 The Inclusive Jet Cross Section Versus ET at
p
s = 1800 GeV

For jet transverse energies achievable at the Tevatron, the inclusive jet cross
section probes distances down to 10�17 cm. For massless jets and 2� accep-
tance in �, this cross section, Ed3�=dp3, can be written as the product:

E
d3�

dp3
=

1

2�ET

d2�

dET d�
:

aPublished in the Proceedings of the XXIX International Symposium on Multiparticle Dy-
namics (ISMD99), Providence, RI, 1999.
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The second factor can be written in terms of the natural experimental variables:

d2�

dET d�
=

N

�ET��L
;

where N is the number of jets observed, �ET is the transverse energy bin size
(5{80 GeV), �� is the pseudorapidity bin size (1.2), and L is the luminosity.

CDF and D0 begin their analyses with similar data quality requirements.
Both de�ne the z-axis as the direction of the proton beam and place a cut on
the absolute value of the z-coordinate of the primary vertex in the event in
order to maintain the projective geometry of the calorimeter towers. CDF re-
quires jzvertexj < 60 cm; D0 requires jzvertexj < 50 cm. To restrict the study to
events whose energy is fully contained in the central barrel calorimeter, CDF
(D0) requires that jets have pseudorapidity (�detector) relative to the detector-
based coordinate system such that 0:1(0:0) � j�detectorj � 0:7(0:5). To reject
background due to accelerator loss, CDF further requires explicitly that the
total energy in the event be less than 1800 GeV. Both experiments place cuts
on the missing transverse energy (6 ET ) in the event in order to reject cosmic
rays and mis-vertexed events. CDF requires that 6 ET =

pP
allET < 6, while

D0 requires that 6 ET < 30 GeV or 0:3Eleading jet
T , whichever is larger. Both

experiments also place cuts on the ratio of energies detected by the electro-
magnetic and hadronic calorimeters and on jet shapes, in order to suppress
background from noise.

The two experiments next correct for pre-scaling of triggers, detection e�-
ciencies (these are typically in the range 94{100%), and \smearing,"6;7 the last
of which concerns the combined e�ect upon the data of energy mismeasurement
and detector resolution. No correction is made for jet energy deposited outside
the cone by the fragmentation process, as this is included in the next-to-leading
order (NLO) calculation to which the data are ultimately compared.

Figure 1 shows the CDF measurement 8 of the inclusive jet cross section
for collisions at

p
s = 1:8 TeV. This �gure includes data measured in Runs 1a

and 1b. The data are compared to the prediction by the NLO calculation by
Ellis, Kunszt, and Soper (EKS) 9, in which the CTEQ4M 10 parton distribu-
tion function (PDF) has been used and the renormalization and fragmentation
scales have both been set equal to ET =2.

Figure 2 shows the quantity (DATA�THEORY)=THEORY for the same
data for cases in which the PDF is CTEQ4M, CTEQ4HJ 10, and MRST 11.
Application to this analysis of the CTEQ4A and MRST PDF families has also
been examined.

The e�ects on the cross section of a 1� change in each of the CDF system-
atic uncertainties are shown in Figure 3. These uncertainties, which are fully
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Figure 1: The preliminary measurement by CDF of the inclusive jet cross section for
p
s =

1:8 TeV, compared to the NLO EKS prediction with input parton distribution function
CTEQ4M.

Figure 2: The percentage di�erence between the inclusive jet cross section as measured by
CDF at

p
s = 1:8 TeV (\DATA"), and the EKS NLO prediction (\THEORY"), for a variety

of input parton distribution functions.
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correlated from bin to bin but are completely uncorrelated with each other,
include the calorimeter's response to charged hadrons and showering particles,
the stability of the energy scale, the details of the jet fragmentation model used
in the simulation, the energy associated with the underlying event in the re-
construction cone, the modelling of the jet energy resolution function required
for unsmearing, and the normalization. The excess at high values of ET that
is present in the Run 1b data is consistent with what was previously observed
in the Run 1a data. The analysis of the Run 1a excess has been described
previously 12. Quantitative comparison of the CDF Run 1b data with theory
is now underway.

Systematic uncertainties (CDF Preliminary)
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Figure 3: The percentage change in the Run 1b inclusive jet cross section, as measured by
CDF, in response to a �1 standard deviation change in each of the systematic uncertainties.

Figure 4 shows the D0 measurement 13 of the inclusive jet cross section.
The data are compared with the NLO calculation JETRAD 14 with PDF
CTEQ3M 15 and both scales set to one-half the maximum transverse energy
associated with a jet in the event.

Figure 5 shows the quantity (DATA�THEORY)=THEORY for the same
data for cases in which the PDF is CTEQ3M, CTEQ4M, and MRST.

The systematic uncertainties associated with the D0 measurement are dis-
played in Figure 6 and concern the calorimeter energy scale, the jet selection
procedure, the uncertainties on trigger prescale values (denoted as the relative
luminosity), the choice of jet energy resolution function used for unsmearing,
and the luminosity. These uncertainties are all fully or partially correlated.
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Figure 4: The measurement by D0 of the inclusive jet cross section for
p
s = 1:8 TeV, com-

pared to the NLO prediction JETRAD with input parton distribution function CTEQ3M.
The error bars indicate the statistical error, and the band represents the systematic.
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Figure 5: The percentage di�erence between the inclusive jet cross section as measured by
D0 at

p
s = 1:8 TeV (\DATA"), and the JETRAD NLO prediction (\THEORY"), for a

variety of input parton distribution functions.
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Figure 6: Contributions to the D0 inclusive jet cross section uncertainty.

The D0 Collaboration has conducted a comparison between the D0 data
and theory. They de�ne �2 � Pi;j(Di � Ti)(C

�1)ij(Dj � Tj); where i is bin
number, D is the number of jets observed in the data, T is the number of jets
predicted by the theory, and C is a covariance matrix which was constructed
by analyzing the correlation of uncertainties between each pair of ET values.
(Bin-to-bin correlations for representativeET bins are about 40% and positive.)
There are 24 degrees of freedom (dof). Comparison of the data to the JETRAD
calculation for 5 PDF's yields �2=dof values that correspond to probabilities
of agreement in the range 47{90% for j�j � 0:5, and 24{72% for 0:1 � j�j �
0:7. Comparison of the D0 data to the EKS calculation using CTEQ3M,
Rsep = 1:3R, and scales � = cEmax

T or cEjet
T ; for c = 0:25, 0.5, and 1.0, yield

probabilities greater than or equal to 57% for all cases.

There is excellent agreement between the nominal CDF and D0 cross sec-
tion values for ET � 350 GeV. To quantify the level of agreement over the
full ET range, D0 carried out a �2 comparison between the D0 data and the
nominal curve describing the central values of the CDF Run 1b data. The re-
sult was a �2=dof = 41:5=24. As this comparison involved the nominal values
of the CDF data, uncertainties on the CDF central values were not included.
To approximate a comparison of the two data sets that includes information
about the uncertainties on both, one can �nd the value of the CDF curve at
each of the D0 ET points, multiply the D0 statistical errors by

p
2, and remove

the 2.7% relative normalization di�erence, between the two experiments, as its
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origin is understood; this yields a �2 of 35.1. One can then add systematic
error information by expanding the covariance matrix to include both D0 and
CDF uncertainties|this yields a �2 of 13.1, corresponding to a probability of
agreement of 96%.

3 The Inclusive Jet Cross Section Versus ET at
p
s = 630 GeV

One can multiply both sides of the inclusive jet cross section formula by E4
T

to obtain the dimensionless cross section, �d, which is de�ned as

�d � E4
T (E

d3�

dp3
):

One can also de�ne the scaled transverse energy of a jet, xT � 2ET =
p
s:

While the Naive Parton Model predicts that �d is independent of
p
s when

plotted versus xT (the hypothesis of scaling), QCD predicts scaling violation
due to the energy scale dependence of the probability for gluon radiation from
a primary parton in the collision. A comparison of �d measured at two di�erent
center-of-mass energies by the same experiment suppresses many theoretical
and experimental uncertainties.

CDF and D0 collected 576 nb�1 and 537 nb�1 of data, respectively, atp
s = 630 GeV. (Results from a data set of 8.6 nb�1 collected at

p
s = 546

GeV were published 7 by CDF previously.) The data taken at
p
s = 630

and 1800 GeV were analyzed by the same method, the only di�erence in the
analyses being the treatment of the correction for the energy of the underlying
event, as this correction is known to increase with

p
s.

Figure 7 shows the results of the studies 16;17 with both sets of data nor-
malized to theoretical calculations; in the case of D0, JETRAD is used, while
in the case of CDF, EKS. Both calculations take the PDF MRSA0 18.

The CDF systematic errors are shown separately in Figure 8. The CDF
and D0 measurements agree with each other above about 80 GeV. While �nal
conclusions must await further studies of the systematic errors, preliminary
results indicate that the data may diverge in the lowest few ET bins. While
the measurements are consistent with each other above 80 GeV, the theoretical
calculation is somewhat higher for ET < 80 GeV. Additional studies are needed
for energy scale determination at low ET before de�nitive conclusions can be
drawn.

4 The Ratio of the Dimensionless Cross Sections Versus xT

Figure 9 shows the ratio of dimensionless cross sections versus jet xT as mea-
sured 17 by D0, compared to the JETRAD prediction for 7 combinations of
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Figure 7: Preliminary D0 and CDF cross sections measured at
p
s = 630 GeV and compared

to NLO QCD predictions. The shaded region indicates the D0 systematic errors.

Figure 8: The percentage change in the inclusive jet cross section, as measured by CDF atp
s = 630 GeV, in response to a �1 standard deviation change in each of the systematic

uncertainties.
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PDF and scale. In each case the same value is used for the renormalization
and the factorization scale at both values of

p
s. In all of these cases, the prob-

ability that the data and the theory are consistent lies in the range 0.01{7.2%.

Figure 9: The preliminary measurement by D0 of the ratio of dimensionless cross sections
taken at

p
s = 630 and 1800 GeV, compared to the NLO JETRAD prediction, for various

combinations of parton distribution functions and scales.

Figure 10 shows the fractional error on the ratio per bin in jet xT and the
bin-to-bin correlation of those errors.

D0 has also considered the case in which the scales are
p
s-dependent.

They �nd, for example, that the combined choice of � = 2ET at
p
s = 630

GeV and � = ET =2 at
p
s = 1800 GeV produces a prediction that has 95%

probability of consistency with the data. D0 interprets this possible preference
of the data for two di�erent scales as an indicator that the next-to-next-to-
leading-order terms in the matrix element for this process, when calculated,
may not be negligible.

Figure 11 shows the CDF measurement 16 of the ratio of dimensionless
cross sections versus jet xT . Both the 630 GeV and the 546 GeV data are
presented and are consistent. The measurements are compared to the EKS
prediction for four choices of PDF and scale. In all four cases the same scale
is used at both values of

p
s. The systematic errors on the CDF measurement

are shown in Figure 12.
The ratio measurements by CDF and D0 are consistent for values of jet

xT greater than 0.1. The discrepancy between the two data sets below that
point may be traced to the measurement of �d at

p
s = 630 GeV and was also

apparent in the
p
s = 546 GeV data. There is, in addition, a slight overall
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Figure 10: Top: the fractional error per xT bin on the D0 measurement of the inclusive jet
cross section at

p
s = 630 GeV; bottom: the bin-to-bin correlation on the errors shown in

the upper plot.

Figure 11: The preliminary measurement by CDF of the ratio of dimensionless cross sections
taken at

p
s = 630 and 1800 GeV, compared to the EKS NLO prediction, for various

combinations of parton distribution functions and scales.
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Figure 12: The percentage change in the ratio of dimensionless cross sections, as measured by
CDF, in response to a �1 standard deviation change in each of the systematic uncertainties.

normalization di�erence of about 20% between the theoretical predictions and
the measurements.
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